import numpy as np
from scipy.stats import skew
x = np.array([4, 5, 6, 7, 8, 9, 10])
f = np.array([2, 3, 2, 5, 3, 4, 2])
data = np.repeat(x, f)
skewness = skew(data)
print(f"Skewness: {skewness:.10f}")
mean = np.mean(data)
mu_4 = np.mean((data - mean)**4)
print(f"Fourth central moment:
{mu_4:.10f}")
import numpy as np
from scipy.stats import kurtosis
x = np.array([1, 2, 3, 4, 5])
f = np.array([2, 3, 4, 5, 6])
data = np.repeat(x, f)
kurt = kurtosis(data)
print(f"Kurtosis: {kurt:.10f}")
mean = np.mean(data)
mu_4 = np.mean((data - mean)**4)
print(f"Fourth central moment:
{mu_4:.10f}")
from math import comb
n = 6
p = 0.1
def binomial_prob(n, k, p):
return comb(n, k) * (p ** k) * ((1 - p) ** (n - k))
p_r_success = binomial_prob(6, 1, p)
p_at_least_r = binomial_prob(6, 1, p) + binomial_prob(6, 2, p) + binomial_prob(6, 3, p)
p_at_most_r = 1 - binomial_prob(6, 1, p) - binomial_prob(6, 2, p)
print("P(X = r):", p_r_success)
print("P(X >= r):", p_at_least_r)
print("P(X <= r)
:", p_at_most_r)
import numpy as np
from scipy.stats import poisson
# Given data
accidents = [0, 1, 2, 3, 4]
frequency = [18, 27, 25, 10, 5]
# Total shifts and total accidents
total_shifts = sum(frequency)
total_accidents = sum([x * p for x, p in zip(accidents, frequency)])
# Calculate mean (λ)
mean_lambda = total_accidents / total_shifts
# Calculate expected frequency using Poisson distribution
expected_frequency = [total_shifts * poisson.pmf(k, mean_lambda) for k in accidents]
# Output
print("Fitting Poisson distribution:")
print("Mean (λ) =", mean_lambda)
print("Expected Frequencies =",
expected_frequency)
Comments
Post a Comment
PLEASE DO NOT ENTER ANY SPAM LINK IN THE COMMENT BOX.